Wrapper Line Improvement

Six Sigma Project
Final Tollgate Presentation

Define Measure Analyze Improve Control

Alah Raqab
Varun Nandakumar
Scott Shepfer
Rohit Subramanian

February 21, 2014
Problem: The Wrapper Final Assembly Line is experiencing long lead times (Avg = 40 hours) and high variability (SD = 11.5 hours) in delivery over the past three months. This increases the production cost per unit.

Goal: To improve lead times 35%, from 40 hours to ~26 hours, while maintaining final product quality.

Cost savings of $660 per unit
- Current labor cost per unit = $2,128
- Future labor cost per unit = ~$1,450
- Annualized cost savings = ~$165,000 (250 units)

Gate Review Schedule

<table>
<thead>
<tr>
<th>Tollgate</th>
<th>Scheduled</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define</td>
<td>11/12/2013</td>
<td>11/12/2013</td>
</tr>
<tr>
<td>Measure</td>
<td>12/13/2013</td>
<td>12/10/2013</td>
</tr>
<tr>
<td>Analyze</td>
<td>2/7/2014</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>Improve</td>
<td>2/19/2014</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>Control</td>
<td>2/19/2014</td>
<td>2/19/2014</td>
</tr>
</tbody>
</table>
Define Phase

1) Average E2E Mfg Lead Time
 - Avg = 40 hours, Std Dev = 11.5 hours
 - Digital method for station and E2E lead time

2) Weekly Defects Per Unit
 - Avg DPU = 1.54
 - Stop gap tick sheet for short-term
 - Digital scanner collection long-term

3) Voice of Customer
 - Used SQDC format to construct CTQC
Measure Phase

Sigma Level = 1.07 \[\rightarrow\] 173 of 250 units (69%) do not meet lead time target

FTE = 1

P/T = 3.1

C/T = 3.1

UTIL = 11.8%

T – Hardware, Raws, FG

I – Raw, WIP, FG inventory

M – Retrieving tools & parts

W – Supplier parts, line balance

O – Sub-subs, FA bottleneck

D – Orientation, torque, missing

TOTAL WAIT TIME 14.25 HRS

TOTAL PROCESS TIME 24.95 HRS

TOTAL LEAD TIME 39.20 HRS

Takt-Time = 26.2

P/T (HRS)

- Station A: 3.10
- Station A1: 1.50
- Station B: 3.60
- Station C: 2.10
- Station D: 3.25

Calibration/ Final Check

- FTE = 0.5
- P/T = 2.5
- C/T = 5
- UTIL = 19.1%

Cooler Test

- P/T = 160
- UTIL = 510.7%

Measurement Set-Up

- FTE = 0.45
- P/T = 3
- C/T = 4.4
- UTIL = 17.0%

Station D

- FTE = 0.1
- P/T = 1
- C/T = 10
- UTIL = 38.2%

Work Content SA Bench (hrs)

Touch Time by FA Station (hrs)

Subassembly

- Stations significantly unbalanced
- Max = 6.7 hrs, Min = 1.1 hr, Std Dev = 1.6

Final Assembly

- Stations significantly unbalanced
- Max = 4.5 hrs, Min = 1 hr, Std Dev = 1.2
Analyze Phase

Defects → Lead Time

- Defects account for 52% of the variability in lead time
- 1 DPU = 10 hrs of Lead Time

Bench & Components → Defects

- Assembly Station and total number of components significant in predicting defects

\[
\text{Defects Per Unit} = 10.092 + 3.073 \times \text{Defects Per Unit}
\]

\[
S = 7.39036 \quad \text{R-Sq} = 51.9% \quad \text{R-Sq(adj)} = 47.1%
\]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>7</td>
<td>133.565</td>
<td>133.565</td>
<td>19.0807</td>
<td>5.8598</td>
<td>0.0004195</td>
</tr>
<tr>
<td>Bench</td>
<td>6</td>
<td>93.934</td>
<td>97.528</td>
<td>16.2547</td>
<td>4.9919</td>
<td>0.0017435</td>
</tr>
<tr>
<td>Total Components</td>
<td>1</td>
<td>39.630</td>
<td>39.630</td>
<td>39.6304</td>
<td>12.1708</td>
<td>0.0018164</td>
</tr>
</tbody>
</table>

Scatterplot of Lead Time vs Defects Per Unit
Improve Phase

Tick Sheet
- Failure Mode Effects Analysis
- Poka Yoke Scanning Process
- Subassembly 5s - Sort
- Flipboard

LEVEL I
- Digital Defect Tracker
- Finished Goods Stocking Model
- Line Balance
- SQDC Board
- Subassembly 5s - Set In Order
- Improve Subassembly Inspection

LEVEL II
- Subassembly 5s - Standardize
- Supplier Quality Audit
- Design for Six Sigma
- Standardized Training Practices

LEVEL III

<table>
<thead>
<tr>
<th>Month</th>
<th>Week</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>46</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>47</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>48</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>49</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>51</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

SAFETY STOCK

<table>
<thead>
<tr>
<th>Year</th>
<th>Service Level</th>
<th>95%</th>
<th>85%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
<td>21</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>24</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td>41</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>2014F</td>
<td></td>
<td>37</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>3YR</td>
<td></td>
<td>32</td>
<td>25</td>
<td>21</td>
</tr>
</tbody>
</table>

Work Content by SA Bench (After)
- **MIN**: Before 1.1, After 2.4
- **MAX**: Before 6.7, After 3.4
- **STD DEV**: Before 1.6, After 0.3

Touch Time by FA Station (After)
- **MIN**: Before 1.0, After 3.2
- **MAX**: Before 4.5, After 2.5
- **STD DEV**: Before 1.2, After 0.3

FIFO LANE FOR FG STOCK

- **SUB ASSY**
 - Before: Min 1.1, Max 6.7, Std Dev 1.6
 - After: Min 2.4, Max 3.4, Std Dev 0.3

- **FINAL ASSY**
 - Before: Min 1.0, Max 4.5, Std Dev 1.2
 - After: Min 3.2, Max 2.5, Std Dev 0.3

Levels

- **LEVEL I**
 - Digital Defect Tracker
 - Finished Goods Stocking Model
 - Line Balance
 - SQDC Board
 - Subassembly 5s - Set In Order
 - Improve Subassembly Inspection

- **LEVEL II**
 - Subassembly 5s - Standardize
 - Supplier Quality Audit
 - Design for Six Sigma
 - Standardized Training Practices

- **LEVEL III**

Safety Stock

- **Service Level**
 - 95%
 - 85%
 - 75%

- **Year**
 - 2011: 21, 18, 16
 - 2012: 24, 20, 18
 - 2013: 41, 30, 24
 - 2014F: 37, 28, 23
 - 3YR: 32, 25, 21
Control Phase

WRAPPER LINE SQDC BOARD

<table>
<thead>
<tr>
<th>SAFETY</th>
<th>DAILY QUALITY</th>
<th>DAILY DELIVERY</th>
<th>DAILY COST</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ATTENDANCE</th>
<th>YTD QUALITY</th>
<th>YTD DELIVERY</th>
<th>YTD COST</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FLEXIBILITY MATRIX</th>
<th>QUALITY CIP</th>
<th>DELIVERY CIP</th>
<th>COST CIP</th>
</tr>
</thead>
</table>

- Top line tracks information daily and is filled out by operators
- Rolls into YTD data at the end of each month by supervisor/engineer
- CIP is a Rolling Action Item List including tasks, owners and due dates
- Creates a continuous PDCA loop
Summary

Status Update

Final presentation and materials delivered to Mettler Toledo

Lessons Learned

- Soft skills as important as hard skills
- Engage more often with operators on the line
- Clearly explain benefits to all parties before implementing solutions
- Adaptability is paramount

Recommendations

- Data, data, data....
- Do something with that data
- Pull Manufacturing
- Design for Six Sigma
- Supplier Quality Program
- Standardized Training Practices

Lean & Six Sigma Tools Applied

- Control Charting
- SIPOC Diagram
- Voice of Customer
- Critical-To-Quality Tree
- RACI Matrix
- Value Stream Mapping
- Spaghetti Diagram
- Capability Analysis
- Measurement System Analysis
- Cause Mapping
- Regression Analysis
- ANOVA
- FMEA
- Line Balance